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Abstract. We exploit the idea of [Fen22] which proposes to build an efficient signature scheme based
on a zero-knowledge proof of knowledge of a solution of a MinRank instance. The scheme uses the
MPCitH paradigm, which is an efficient way to build ZK proofs. We combine this idea with another
idea, the hypercube technique introduced in [AMGH+22], which leads to more efficient MPCitH-based
scheme. This new approach is more efficient than classical MPCitH, as it allows to reduce the number
of party computation. This gives us a first scheme called MIRA-Additive. We then present an other
scheme, based on low-threshold secret sharings, called MIRA-Threshold, which is a faster scheme, at
the price of larger signatures. The construction of MPCitH using threshold secret sharing is detailed
in [FR22]. These two constructions allows us to be faster than classical MPCitH, with a size of signature
around 5.6kB with MIRA-Additive, and 8.3kB with MIRA-Threshold. We detail here the constructions
and optimizations of the schemes, as well as their security proofs.
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1 Introduction

MIRA is a signature scheme designed to be secure against attacks from a quantum computer. The
scheme is based on the MPC-in-the-Head paradigm and its security relies on the hardness to solve
the MinRank problem. The underlying proof of knowledge uses symmetric functions as ingredients,
such as hash functions and commitment schemes.

In section 2, we remind the reader some notations and definitions. We remind as well the MPC
protocol we will use. In section 3, we describe the two variants of the MPCitH scheme, one using
additive secret sharing, the other using threshold secret sharing. Then, section 4 explains the choice
of parameters, and the obtained theoretical sizes. Section 5 deals with the security proofs of both
schemes. Finally, section 6 is dedicated to the security of the scheme regarding to the Fiat-Shamir
transform and the MinRank problem.

In our schemes, the MPC protocol we use is the linearized-polynomial protocol on MinRank de-
scribed in [Fen22]. The hypercube MPCitH idea comes from [AMGH+22], while the threshold
MPCitH one from [FR22].

2 Preliminaries

2.1 Notations and Conventions

Let A a randomized algorithm. We write y ← A(x) the output of the algorithm for the output x. If

S is a set, we write x
$←− S the uniform sampling of a random element x in S. We write x

$,s←− S
the pseudo-random sampling in S with seed s.

We denote the set of integers between 1 and N by [1, N ], which can be shortened in [N ].

We denote by Fq the finite field of order q. We use bold letters to denote vectors or matrices (for
example, u ∈ Fn

q and u ∈ Fq).

A function µ : N→ R is said negligible if, for every positive polynomial p(·), there exists an integer
Np > 0 such that for every λ > Np, we have |µ(λ)| < 1/p(λ). When not made explicit, a negligible
function in λ is denoted negl(λ) while a polynomial function in λ is denoted poly(λ). We further
use the notation poly(λ1, λ2, ...) for a polynomial function in several variables.

Two distributions {Dλ}λ and {Eλ}λ indexed by a security parameter λ are (t, ϵ)-indistinguishable
(where t and ϵ are N← R functions) if, for any algorithm A running in time at most t(λ) we have

Pr[ADλ() = 1]− Pr[AEλ() = 1] ≤ ϵ(λ)

with ADist meaning that A has access to a sampling oracle of distribution Dist.

The two distributions are said

– computationally indistinguishable if ϵ ∈ negl(λ) for every t ∈ poly(λ);

– statistically indistinguishable if ϵ ∈ negl(λ) for every unbounded t;

– perfectly indistinguishable if ϵ = 0 for every unbounded t.
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2.1.1 Pseudorandom Generators

Definition 1 (Pseudorandom Generators). Let G : {0, 1}∗ → {0, 1}∗, ℓ a polynomial such that
G(s) ∈ {0, 1}ℓ(λ). G is a (t, ϵ)-secure pseudorandom generator if:

– ℓ(λ) > λ,

– the distributions {G(s), s← {0, 1}λ} and {r, r $←− {0, 1}ℓ(λ)} are indistinguishable.

In some protocols, we are going to use TreePRG, which is a pseudorandom generator, which uses a
root seed to generate N other seeds in a structured way. This can be illustrated quite easily with
the following figure:

seedroot

seedint1

seed1 seed2

seedint2

seed3 seed4

Fig. 1: Example of TreePRG

Now, imagine one is looking to reveal seed1, seed3 , and seed4, and hide seed2. Then, all he has to
do is reveal seedint2 and seed1. It is impossible to retrieve seed2, as we don’t know the previous seed,
but it is possible to retrieve the others. In this small example, we took N = 4. This is especially
interesting when, as in the additive-based MPCitH transformation we will see later, we reveal N−1
leaves. This means that we can do this operation by revealing only log2(N) leaves instead of N − 1.
In general, for a TreePRG with N final seeds and given a subset I ⊂ [1, N ], it is possible to reveal
all the leaves but the ones in I by revealing at most |I| log2(N|I|) tree nodes.

We thus have three functions in order to deal with a TreePRG:

– the root seed expansion, which generates N seeds from a root seed;

– the sibling path derivation, which generates a sibling path from a leaf seed;

– the leaf seeds retrieval from a sibling path.

2.1.2 Collision-Resistant Hash Functions
We are going to use hash functions in the zero-knowledge protocols. We define below what is a
collision resistant hash function.

Definition 2 (Collision-Resistant Hash Function). Let h : {0, 1}∗ → {0, 1}λ. It is a collision-
resistant hash function if h can be computed in a polynomial time, and, for any polynomial algorithm
A,

Pr[(x1, x2)← A(λ), x1 ̸= x2, h(x1) = h(x2)] < ϵ(λ)

where ϵ(λ) is negligeable.
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2.1.3 Commitments Schemes

The security of the proof of knowledge relies on commitments, in order to avoid an attacker to forge
a valid transcript. The commitment scheme should satisfy two properties: the commitment should
reveal no information about the data we committed (hiding property), and there should be only
one way to open the commitment (binding property).

Definition 3 (Commitment Scheme). A commitment scheme is defined by the function Com,
which takes as inputs m, ρ with m, and ρ, and outputs c, for some message space, randomness space,
and commitment space.

Definition 4 (Hiding). A commitment scheme Com is computationally (resp. statistically, resp.
perfectly) hiding if, for every m0,m1, the distributions of

{Com(m0, ρ), ρ←$} and {Com(m1, ρ), ρ←$}

are computationally (resp. statistically, resp. perfectly) indistinguishable.

Definition 5 (Binding). A commitment scheme Com is binding if, for every PPT algorithm A,
we have

Pr[Com(m, ρ) = Com(m′, ρ′) ∩m ̸= m′, (m, ρ,m′, ρ′)← A] < µ(λ)

where µ is a negligible function. If we restrict A to a PPT, it is computationally binding. If the
computation time is unbounded, it is statistically binding.

2.1.4 Merkle Trees
A collision-resistant hash function (that we will note HM ) can be used to build a Merkle Tree. Given
inputs v1 . . . vN , we define Merkle(v1 . . . vN ) as:

Merkle(v1 . . . vN ) =

{
HM

(
Merkle(v1 . . . vN

2
)∥Merkle(vN

2
+1 . . . vN )

)
if N > 1

HM (v1) if N = 1
(1)

Thanks to Merkle Trees, similarly to the TreePRG described above, it is possible to verify that
some given data is correct in an easy way. Given I ⊂ [1, N ], it is possible to verify that the (vi)i∈I

were indeed used to build the Merkle Tree only by revealing at most |I| log2
(

N
|I|

)
hash values, by

revealing the sibling paths of the (vi)i∈I . This path is called the authentification path and is denoted
auth((v1 . . . vN ), I).

2.1.5 Secret Sharing Schemes

The interactive proof relies on a prover simulating a MultiParty Computation (MPC) protocol,
where each party has a share of the witness x. We detail here the formalism from [FR22]. The
sharing of a secret s among N parties is denoted (JsK1, . . . , JsKN ) where JsKi is the share of the ith

party. Given J ⊂ [1, N ], JsKJ is the subset of shares {JsKj}j∈J .
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Definition 6 (Threshold Linear Secret Sharing). Let F a finite field. Let 1 < t ≤ N . A (t,N)-
threshold linear secret sharing scheme (TLSSS) is a scheme to share a secret, s ∈ F, in a sharing
JsK = (JsK1 . . . JsKN ) ∈ FN , where only t coordinates of JsK need to be known in order to reconstruct
the secret s, while the knowledge of t− 1 coordinates of JsK reveals no information.

We can write this the following way:{
Share : F×R→ FN

ReconstructJ : Ft → F
(2)

R corresponds to the randomness space used to build the shares. J is a subset of {1 . . . N}, with
|J | = t. The two algorithms of a TLSSS must satisfy some properties:

– Correctness. For every s ∈ F, r ∈ R, J ⊂ [1, N ] such that |J | = t and for JsK← Share(s; r), we
have:

ReconstructJ(JsKJ) = s

– Perfect (t− 1)-privacy. For every s0, s1 ∈ F, I ⊂ [1, N ] with |I| = t− 1, the two distributions:{
Js0KI

∣∣∣ r
$←− R

Js0K[1,N ] ←− Share(s0, r)

}
and

{
Js1KI

∣∣∣ r
$←− R

Js1K[1,N ] ←− Share(s1, r)

}

are perfectly indistinguishable.

– Linearity. For every v0, v1 ∈ Ft, α ∈ F, J ⊂ [1, N ] with |J | = t,

ReconstructJ(α · v0 + v1) = α · ReconstructJ(v0) + Reconstruct(v1).

We recall below two among the most used secret sharing schemes.

Definition 7 (Additive Secret Sharing). Let F a field and s ∈ F a secret. An additive secret
sharing with N parties is a (N,N)-threshold sharing scheme such that:

– JsKi = ri for i ∈ [1, N − 1], where ri
$←− F;

– JsKN = s−
∑N−1

i=1 JsKi.

The Reconstruct[1,N ] algorithm takes as inputs all the shares, and outputs the sum of all the shares.

Definition 8 (Shamir’s Secret Sharing). Let F a field and s ∈ F a secret. A Shamir’s secret
sharing is the following (ℓ+ 1, N)-threshold sharing scheme:

– Sample (r1, . . . , rℓ)
$←− Fℓ;

– Compute P (X) = s+
∑ℓ

i=1 riX
i;

– Compute JsKi = P (ei) where the (ei)i∈{1,...,N} are distinct and non-zero public values.

For J a subset of [1, N ] with |J | = ℓ+1, the ReconstructJ algorithm corresponds to the interpolation
of the polynomial P, when taking in inputs JsKi for i ∈ J , and outputs the constant term, s.
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Proposition 1. Let an (ℓ+1, N)-threshold LSSS. For each v ∈ Fℓ+1 and each subset J ⊂ [1, N ] of
ℓ+1 elements, there exists a unique sharing JxK[1,N ] ∈ FN such that JxKJ = v, and such that for all
J ⊂ [1, N ] of ℓ+ 1 elements:

ReconstructJ (JxKJ ) = ReconstructJ(v)

Proof. See [FR22].

One deduces there exists an algorithm ExpandJ which returns the unique sharing from a subset J
of the shares. For example, in the Shamir’s secret sharing, ExpandJ builds the Lagrange polynomial
from the known evaluations and outputs the image of each party’s point.

2.2 Proof of Knowledge and Digital Signature Schemes

2.2.1 Zero-Knowledge Proof of Knowledge
We define here the concept of proof of knowledge. Let R ⊂ {0, 1}∗×{0, 1}∗ an NP-relation. (x, ω) ∈ R
is a statement-witness pair where x is the statement and ω an associated witness. The set of valid
witnesses for a statement x is R(x) = {ω : (x, ω) ∈ R}. A prover P wants to use a proof of knowledge
to convince a verifier V that he knows a witness ω for a statement x.

Definition 9 (Proof of knowledge). A proof of knowledge for a relation R with soundness ϵ is a
two-party protocol between a prover P and a verifier V with a public statement x, where P want to
convince V that he knows ω such that (x, ω) ∈ R. We denote {P(x, ω),V(x)} the transcript between
P and V. A proof of knowledge has the following properties:

– Perfect completeness: If (x, ω) ∈ R, then a prover P who knows a witness ω for x succeeds
in convincing the verifier V of his knowledge. This means that the prover convinces the verifier
with probability 1, i.e,

Pr[⟨P(x, ω),V(x)⟩ → ACCEPT] = 1.

– Soundness: If there exists a PPT prover P̃ such that

ϵ̃ = Pr[⟨P̃(x),V(x)⟩ → ACCEPT] > ϵ,

then there exists an algorithm which, given rewindable black-box access to P̃, outputs a witness
ω′ for x in time poly(λ, (ϵ̃− ϵ)−1) with probability at least 1

2 .

To be zero-knowledge while the prover interacts with a honest verifier (i.e., a verifier sending his
messages according to the definition of the protocol), the PoK must verify the following property :

Definition 10 (Honest-Verifier Zero-Knowledge). A PoK satisfies the Honest-Verifier Zero-
Knowledge (HZVK) property if there exists a polynomial-time simulator Sim that given as input a
statement x and random challenges (ch1, ..., chn), outputs a transcript {Sim(x, ch1, ..., chn),V(x)}
which is computationally indistinguishable from the probability distribution of transcripts of honest
executions between a prover P(x,w) and a verifier V(x).

Definition 11 (Digital Signature Scheme). A digital signature scheme DSS with security pa-
rameter λ is a triplet of polynomial time algorithms (KeyGen,Sign,Verif) such that:
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– The key-generation algorithm KeyGen is a probabilistic algorithm which outputs a pair of keys
(pk, sk).

– The signing algorithm Sign, eventually probabilistic, which takes as inputs a message m to sign
and the secret key sk, and outputs a signature σ.

– The verification algorithm Verif which takes as inputs the public key pk, the message m and its
signature σ, and outputs a bit b. The output 1 means that the signature is considered as valid.

A correct signature scheme satisfies the following property: if (pk, sk) ← KeyGen, for all messages
m signed by σ ← Sign(pk,m), we have 1 ← Verif(sk,m, σ). This means, if a signature is correctly
generated, then it is always accepted.

The standard security notion for digital signature schemes is existential unforgeability under adap-
tive chosen message attacks (EUF-CMA) is defined as follows:

Definition 12 (EUF-CMA). We can define the following game Geuf-cma where Sign(sk, ·) is an
oracle that sign messages:

(pk,sk)← KeyGen()

(m∗, σ∗)← ASign(sk,·)(pk)
(m,σ)← A

The game returns 1 if Verif(m,σ, pk) = 1 and m was not queried to Sign(sk, ·). The signature scheme
is EUF-CMA secure if, for every polynomial adversary A, Pr[Geuf-cma(A) = 1] is negligible.

2.2.2 Fiat-Shamir Transformation

The Fiat-Shamir (FS) transformation is a generic process allowing to convert an interactive iden-
tification scheme into a signature. The main adaptation lies in the removal of the interactions in
the protocol: one needs to pull the challenges in a deterministic way to sign a message without the
assistance of a verifier. Note that the protocol must be repeated several times to achieve the desired
level of security. We note τ the number of repetitions. One will see in section 6.1 that there is an
effective attack if τ is too small.

Let us describe the FS tranformation on a 5-round zero-knowledge proof of knowledge. Concretely,
the prover begins as in the zero-knowledge proof by committing all the auxiliary information. At
the end of the first step, the prover computes:

h1 = H1(salt,m, (h
(e)
0 )e∈[1,τ ])

where H1 is an hash function, h(e)0 is the first step commitment of the eth execution of the protocol,
and salt a random value in {0, 1}2λ. The prover obtains the first challenge (one challenge per
execution e ∈ [1, τ ]) from h1 by using a XOF (Extendable Output Function).

The second challenge is generated in a similar way: the prover computes an element h2 thanks to an
other hash function H2 and the other information computed during the step 3. The prover obtains
the second challenge (one challenge per execution e ∈ [1, τ ]) from h2 by using a XOF as well.

The signature σ therefore consists of sending:
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– the salt salt;

– h1 as commitment of the initial values;

– h2 as hash of all responses of the first challenge;

– each response rsp of the second challenge.

The signature is:
σ = (salt, h1, h2, (rsp

(e))e∈[1,τ ]).

2.2.3 Useful Lemmas

Lemma 1 (Splitting Lemma). Let A ⊂ X × Y such that Pr[(x, y) ∈ A] ≥ ϵ. For any α < ϵ, let
us define

B =
{
(x, y) ∈ X × Y | Pry′∈Y [(x, y′) ∈ A] ≥ ϵ− α

}
and B̄ = (X × Y ) \B.

Then we have

– Pr[B] ≥ α,

– ∀(x, y) ∈ B,Pry′∈Y [(x, y
′) ∈ A] ≥ ϵ− α,

– Pr[B|A] ≥ α
ϵ .

Proof. An interested reader can refer to [PS00].

2.2.4 q-Polynomials and Rank Metric definition

One of the main tools we are going to use are q-polynomials, as they allow us to characterize linear
subspaces.

Definition 13 (q-polynomial). A q-polynomial of q-degree r is a polynomial in Fqm [X] of the
form:

P (X) = Xqr +

r−1∑
i=0

pi ·Xqi with pi ∈ Fqm .

Proposition 2. Let P a q-polynomial, α, β ∈ Fq, x, y ∈ Fqm . We then have:

P (αx+ βy) = αP (x) + βP (y)

Proof. This comes directly from the fact that the Frobenius endomorphism: x 7−→ xq is linear over
Fq

We can see q-polynomials as Fq-linear applications from Fm
q to Fqm . It is then possible to define a

linear subspace of Fqm from a q-polynomial.

Proposition 3. The set of roots of a non-zero q-polynomial of q-degree r forms a linear subspace
of dimension lower than or equal to r.
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Proof. Let P a q-polynomial of degree r. One can see P as a linear application from Fm
q to Fm

q . As
an endomorphism kernel, the set of zeros forms a linear space. Since it is a polynomial of degree qr,
P has at most qr roots, giving the upper bound on the subspace dimension.

Proposition 4 ( [Ore33]). Let E a linear subspace of Fqm of dimension r ≤ m. Then there exists
a unique monic q-polynomial of q-degree r such that every element in E is a root of P .
P is called the annihilator polynomial of E.

Let us define the usual notions of the rank metric:

Definition 14. Let E ∈ Fm×n
q =

(
ei,j

)
with ei,j ∈ Fq for (i, j) ∈ [1,m] × [1, n], and let B =

(b1 . . . bm) an Fq-basis of Fqm . It is then possible to associate each column of E to an element of
Fqm using

ej =

m∑
i=1

biei,j

for each j ∈ [1, n]. By defining e = (e1 . . . en), we can say that e is the vector associated to the
matrix E.

The rank weight is defined as WR(e) = Rank(E). The distance between two vectors x and y is then
d(x,y) = WR(x− y). The support of e = (e1 . . . en) is the linear subspace of Fqm generated by its
coordinates: Supp(e) = ⟨e1 . . . en⟩.

Remark 1. The choice of the basis B does not change anything to the weight of e or the rank of E.
The rank of E is obviously equal to the dimension of Supp(e). Moreover, in the above definition,
we are working on the columns of E. We stress that it is possible to work with the rows instead,
as it may be more efficient, depending on the values of m and n. We will also abuse notations, and
sometimes note Supp(e) as Supp(E).

The number of supports possible of dimension r when working in Fqm is

[
m
r

]
q

=

r−1∏
i=0

qm − qi

qr − qi
≈ qr(m−r).

2.3 MPC-in-the-Head and Proof of Knowledge

The following explanation of the MPCitH paradigm comes from [Fen22, Section 2.1].

The MPC-in-the-Head (MPCitH) paradigm introduced in [IKOS07] offers a way to build zero-
knowledge proofs from secure multi-party computation (MPC) protocols. Let us assume we have
an MPC protocol in which N parties P1, . . . ,PN securely and correctly evaluate a function f on a
secret input w with the following properties:

– the secret witness w is encoded as a sharing JwK and each Pi takes a share JwKi as input;

– the function f outputs Accept or Reject;

– the views of t parties leak no information about the secret w, where t+1 is the threshold of the
secret sharing.
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We can use this MPC protocol to build a zero-knowledge proof of knowledge of a witness w for
which f(w) evaluates to Accept. The prover proceeds as follows:

– she builds a random sharing JwK of w;

– she simulates locally (“in her head”) all the parties of the MPC protocol;

– she sends commitments to each party’s view, i.e, party’s input share, secret random tape and
sent and received messages, to the verifier;

– she sends the output shares Jf(w)K of the parties, which should correspond to Accept.

Then the verifier randomly chooses t parties and asks the prover to reveal their views. After receiving
them, the verifier checks that they are consistent with an honest execution of the MPC protocol and
with the commitments. Since only t parties are opened, revealed views leak no information about
the secret w, while the random choice of the opened parties makes the cheating probability upper
bounded by (N − t)/N , thus ensuring the soundness of the zero-knowledge proof.6

In our case, the parties take as input a linear sharing JwK of the secret w (one share per party) and
they compute one or several rounds in which they perform three types of actions:

Receiving randomness: the parties receive a random value ϵ from a randomness oracleOR. When
calling this oracle, all the parties get the same random value ϵ.

Receiving hint: the parties can receive a sharing JβK (one share per party) from a hint oracle OH .
The hint β can depend on the witness w and the previous random values sampled from OR.

Computing & broadcasting: the parties can locally compute JαK := Jφ(v)K from a sharing JvK
where φ is an F-linear function, then broadcast all the shares JαK1, . . . , JαKN to publicly recon-
struct α := φ(v). The function φ can depend on the previous random values {ϵi}i from OR and
on the previous broadcasted values. One should note that in the case of additive sharing, only
one party needs to compute the addition by a constant.

We restrain here to threshold linear sharings, i.e, additive secret sharing and low-threshold linear
secret sharing, which is the framework in which [FR22] and [Fen22] are set.

In [AMGH+22], another way to verify the parties’ computation (in the case of additive sharing) has
been introduced which is more efficient. This is the hypercube technique, which we will detail here.

The idea of the hypercube construction is the following:

– Generate N = 2D parties with an additive sharing. Those parties can be indexed either by an
integer in [1, N ] or by a vector in [1, 2]D. For example, the i-th leaf can be written as the leaf i,
or as the leaf (i1, . . . , iD);

– For each dimension of the hypercube, compute the main shares by summing up the 2D−1 shares
of a slice of the hypercube. We have 2 main parties per dimension, i.e, 2 ·D main parties in total.
We can also establish a mapping between the main parties and the leaves of the hypercube, by
writing a main party p = (k, j) ∈ [1, D] × [1, 2]. Concretely, for a witness w, the share of the
main party p = (k, j) can be built (and written) JwK(k,j) =

∑
i:ik=jJwKi. These main shares will

be written either as JwK(k,j) or as JwK(p1,p2), depending on the indices we use.

6 We implicitly assume here that the communication between parties is broadcast.
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– Execute the MPC protocol for all the dimension, i.e, execute D times the MPC protocol, each
time with the 2 main parties of the dimension.

Since we built the hypercube with an additive sharing, we know that the sum of all the leaves gives
us the secret. This means that we can sum them up in every way we want (the way in which we
sum them depends on the dimension). This is an improvement compared to the standard MPC in
the head, as instead of simulating one protocol with 256 parties, we can simulate 8 MPC protocols,
with only 2 parties each. Furthermore, since the used secret is the same for every dimension and
since the broadcasted plaintext values are the same for every protocol, it is possible to:

– Execute the MPC protocol for the two parties for one dimension;

– For D − 1 dimensions:

• Execute the MPC protocol for one party P1;

• Subtract the share broadcasted by P1 to the broadcast plaintext value;

• Set the resulting share as the broadcasted share of the second party P2.

Even though this doesn’t reduce the size of the communication cost, this is an improvement as the
computations are faster (we avoid the computation for D − 1 parties). Moreover, we can observe
that taking a hypercube with edge size larger than 2 brings no advantage over a power of 2 (see
[AMGH+22]). This is why N is always a power of 2 in the case of the hypercube scheme.

2.4 The MinRank Problem

Definition 15 (MinRank). Let Fq be the finite field of size q, and m,n, k, r ∈ N∗. The computa-
tional MinRank Problem with parameters (q,m, n, k, r) is the following problem:
Let M1, . . . ,Mk,E ∈ Fm×n

q and x ∈ Fk
q be uniformly sampled such that

WR(E) ≤ r with M0 := E −
k∑

i=1

xiMi.

Given M0, . . . ,Mk, retrieve the vector x.

The MinRank problem was proven to be NP-Complete by [BFS99], and plays a central role in
cryptography. It is used in the attacks on HFE, and appears in syndrome decoding in rank metric.
It was also used in some signatures, such as Courtois’ signature [Cou01], MR-DSS [BESV22], or
MinRank in the Head [ARZV22] for instance.

2.4.1 Key Generation

In practice, to generate a MinRank instance, one has to:

– Sample x uniformly in Fk
q ;

– for all i ∈ [1, k], sample Mi ∈ Fm×n
q ;

– Sample E ∈ Fm×n
q such that WR(E) ≤ r;

– Define M0 as E −
∑k

i=1Mixi.
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From this, we can quickly explicit a KeyGen algorithm:

– x
$←− Fk

q

– For i ∈ [1, k], Mi
$←− Fm×n

q

– E
$←− Fm×n

q such that WR(E) ≤ r

– M0 = E −
∑k

i=1 Mixi

– Set pk = (M0, . . . ,Mk) and sk = x
– Return (pk, sk).

Fig. 2: Key generation – Simple version

The size of the public key will be m · n · log2 q + λ bits (M0 and the seed used for the random
matrices), and the size of the secret key will be λ bits (if we sample x from a seed).

However, it is possible to optimize this key generation. First, we need to define the systematic form
of a MinRank problem. Let L1 be the (k + 1) ×mn matrix, composed of M0, . . . ,Mk written in
lines, following the row order. Then, if the first k columns and k rows of L1 form a full rank matrix,

we can obtain a matrix L =

[
Ik

0 . . . 0
L′

1

]
where Ik is the k×k identity matrix, using row operations.

Row operations on the matrix L1 correspond to a linear combination of M0, . . . ,Mk, meaning they
don’t change the number of solutions of the instance.

For a generic MinRank instance (i.e, with high probability, as noted in [BESV22] and used in
[BBB+22]), this transformation will be possible. This means we can generate the instance directly
in this systematic form, without changing the difficulty of the problem. To proceed, we will use the
procedure described in [BESV22]:

– Sample L ∈ Fk×mn
q uniformly such that L =

[
Ik

∣∣∣∣L′] where Ik is the k× k identity matrix and

L′ is an k × (mn− k) matrix;

– Set Mi as the i-th line of L, written in a matrix form (in row order, i.e, the first row of the
matrix is the first n entries of the lines, the second row is the next n entries and so on);

– Sample E
$←− Fm×n

q uniformly such that WR(E) ≤ r and β
$←− Fk

q ;

– Compute F = E −
∑k

i=1 βiMi;

– Compute M0 = F −
∑k

i=1 fiMi where f = (f1 . . . fk) are the first k entries, in row order, of F ;

– Set x = β + f .

It is clear that we have M0 = E −
∑k

i=1 xiMi and that the first k entries of M0 are zeros. Since
L comes from a random seed, our secret key x can be retrieved from the used seed, and is thus of
size λ bits. For our public key, we have M1, . . . ,Mk of size λ bits, plus M0, of size (mn− k) · log2 q
bits.
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– Sample L ∈ Fk×mn
q uniformly such that L is of the form described above

– Set Mi as the i-th line of L, written in a matrix form (in row order)

– Sample E
$←− Fm×n

q uniformly such that WR(E) ≤ r, and β
$←− Fk

q

– Compute F = E −
∑k

i=1 βiMi

– Compute M0 = F −
∑k

i=1 fiMi where f = (f1 . . . fk) are the first k entries, in row order, of F
– Set x = β + f
– Set pk = (M0, . . . ,Mk) and sk = x
– Return (pk, sk).

Fig. 3: Key generation – Optimized version

2.5 Rank Checking MPC protocol

It is necessary to build a protocol allowing us to verify that the space generated by a list of n ≥ r
elements is at most r. We will build here a MPCitH ZK-proof based on Feneuil’s protocol using
q-polynomials [Fen22], that we will remind here. We want to check that a list of elements (ej)j∈[1,n],
where ej ∈ Fqm , leads to a Fq-linear subspace U of dimension at most r.

Given U , let LU be the polynomial:

LU =
∏
u∈U

(X − u) ∈ Fqm [X].

It is possible to show that all the ej are roots of LU , which is a q-polynomial. It means that LU is
of the form:

LU (X) =
r−1∑
i=0

βiX
qi +Xqr

Rather than checking separately that each ej is a root of LU , we will batch all these verifications
by uniformly sampling γ1, ..., γn in an extension Fqmη of Fqm and check that:

n∑
j=1

γjLU (ej) = 0

If one or more of the ej is not a root of LU , the above equation is satisfied with probability at most
1

qmη . Then,

n∑
j=1

γjLU (ej) =
n∑

j=1

γj

(
r−1∑
i=0

βie
qi

j + eq
r

j

)

=

n∑
j=1

γje
qr

j +

r−1∑
i=0

βi

n∑
j=1

γje
qi

j

Defining z = −
∑n

j=1 γje
qr

j and wi =
∑n

j=1 γje
qi

j , proving the equation is equivalent to prove that

z = ⟨β,w⟩.

The latter equation will be checked thanks to the multiplication protocol from [BN20] (adapted in
the matrix setting, see [Fen22]). In the case of MinRank, we want to apply this protocol to E, which
we will have to compute. In what follows, we work on the columns of E and in Fqm . Depending
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on the parameters, it might also be easier to work on the rows of E. This gives us the following
protocol from [Fen22]:

– Public data: M0, . . . ,Mk ∈ Fm×n
q

– Each party receives [[x]] ∈ Fk
q , [[L]] =

∑r−1
i=0 [[βi]]X

qi +Xqr where each βi ∈ Fqm , [[a]] where a is uniformly sampled from
Fr
qmη and [[c]] ∈ Fqmη such that c = −⟨a,β⟩.

1. The parties sample (γ1, ..., γn, ϵ)
$←− Fn+1

qmη

2. The parties compute JEK = M0 +
∑k

i=1[[xi]]Mi

3. The parties set [[ei]] as the element in Fqm associated to the i-th column of [[E]]

4. They compute [[z]] = −
∑n

j=1 γj [[ej ]]
qr

5. For i from 0 to r − 1:
– They compute [[wi]] =

∑n
j=1 γj [[ej ]]

qi

6. The parties compute [[α]] = ϵ · [[w]] + [[a]] and open the shares to get α
7. The parties compute [[v]] = ϵ · [[z]]− ⟨α, [[β]]⟩ − [[c]] and open the shares to get v
8. They output ACCEPT if v = 0, and REJECT otherwise

Fig. 4: Protocol Πη to check that an input is solution of an instance of MinRank

One should stress that we can locally compute shares to the power qi. Since we are in Fq, this
operation is linear, and thus this operation is basically “free” in multiparty computation.

Proposition 5 ( [Fen22]). If WR (E) ≤ r, then the protocol Πη always accepts. If WR (E) > r,
the protocol accepts with probability at most: pΠ,η = 2

qmη − 1
q2mη (we call pΠ,η the false positive rate

of Πη).

Proof. The proof is the same as the one in [Fen22, Section 5.1]

Thanks to this MPC protocol, we can build a zero-knowledge proof of knowledge protocol, using
either additive secret sharing (Fig.5) or threshold secret sharing (Fig.10).

3 Description of the Protocols

3.1 Description of MIRA-Additive

3.1.1 Proof of Knowledge with Additive Secret Sharing Scheme

We describe here the idea of the hypercube technique introduced by [AMGH+22].

– The prover generates N = 2D shares of the inputs of the Πη protocol (Fig.4), using an additive
secret sharing scheme;

– He then computes the shares associated to the “main parties”, i.e, the parties associated to each
dimension, by summing up the 2D−1 shares that have the same index on the dimension (in the
same way as explained in section 2.3);

– There are D dimensions, each of them having 2 main parties. The prover sends the commitments
of all the N shares;

– He then receives the first challenge, which is some random values for the computation of the Πη

protocol;
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– Then, for D+ 1 main parties, he executes the protocol Πη. For the D− 1 other parties, he will
use the broadcasted values of α and v in order to compute their shares of α and of v. He will
hash these values;

– He sends to the verifier the hash of these values (it is possible to hash them twice, as is done in
the description of Fig.6, or not);

– He receives the second challenge, which is a single leaf, i∗;

– He reveals every commitment except the i∗th one, and sends the share JαKi∗ broadcast by the
party i∗;

– The verifier can then reconstruct the broadcast shares of the main parties, i.e the 2 shares for
each dimension, and then check that everything is correct. Similarly to the prover, he can avoid
the computation of the protocol for D − 1 parties.

One detail to notice is that in Fig.6, we use an hash function to output the broadcast shares. We
stress that this hash function is not mandatory. The security of the protocol with or without it is
the same. Depending on the implementation, using it can be more convenient (for example, to save
memory when the used implementation of the hash functions is not incremental). In our security
proofs, we will consider that such hash function is used.

Finally, if i∗ ̸= N , the prover has to send JxKN , JβKN , JcKN in addition to the sibling path. This
comes from the fact that these shares are not completely random.

This gives us the protocol provided in Fig.5. We insist on the fact that, as mentioned in section 2.3,
a prover doesn’t need to simulate 2D parties in step 10, but only D + 1, as the values of α and v
are the same, no matter the dimension. In fact, for D − 1 dimensions in step 10, it is possible to
retrieve JαK(k,2) by computing α− JαK(k,1) instead of simulating the MPC protocol. We emphasize
on this optimisation, as this is a crucial advantage of the hypercube structure.

We prove that our scheme satisfies the necessary security properties in the proof of theorem 1 in
section 5.1.

3.1.2 MIRA-Additive

From the zero-knowledge protocol, we can simply deduce a signature scheme, using the Fiat-Shamir
transform. The protocol is now non-interactive, and we deterministically sample the challenge thanks
to a hash function. We must repeat the zero-knowledge protocol several times, in order to reach a
certain level of security. Note that we use a value salt, as in [FJR22], in order to increase the security
of the scheme as it reduces the probability to have seeds collisions. Moreover, simarly than in the
proof of knowledge, the hash function H3 is not mandatory and depends only of implementation
choices. The signature protocol obtained is described in Fig.8 and Fig.9. As aforementioned in the
proof of knowledge, the signature process avoid the computation of the MPC protocol for D − 1
parties in step 8. The verification process avoids it in step 6 as well.

We prove that the scheme is EUF-CMA secure in the proof of theorem 3 in section 5.2.
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- Public data M0, . . . ,Mk ∈ Fm×n
q

The prover wants to convince the verifier that he knows a solution x ∈ Fk
q of the MinRank instance, i.e such as E =

M0 +
∑k

i=1(Mixi) and WR(E) ≤ r

Step 1: Commitment

1. The prover sets U = ⟨e1 . . . en⟩, and computes L(X) =
∏

u∈U (X − u) = Xqr +
∑r−1

i=0 βi ·Xqi for some βi ∈ Fr
qm

2. The prover samples a root seed: seed $←− {0, 1}λ

3. The prover expands the root seed recursively using TreePRG to obtain N leaves, from which he derives N seeds and N
commitment random tapes (seedi′ , ρi′ )

4. For each i ∈ [1, N − 1]:

- Sample (JxKi, JβKi, JaKiJcKi)
$,seedi←− PRG where PRG is a pseudo-random generator

- statei = seedi

5. For the share N :

- Sample JaKN
$,seedN←− PRG

- Compute JxKN = x−
∑N−1

i=1 JxKi, JβKN = β −
∑N−1

i=1 JβKi and JcKN = −⟨a,β⟩ −
∑N−1

i=1 JcKi
- stateN = (seedN , JxKN , JβKN , JcKN )

6. The prover computes the commitments: cmti = Com
(
statei, ρi

)
, for each i ∈ [1, N ].

7. The prover computes and sends h0 = H(cmt1, · · · , cmtN ) to the verifier.
8. The prover computes the input shares of the main parties by summing all the associated leaves. We index each party
by its coordinates on the hypercube: i = (i1, ..., iD) where ik ∈ [1, 2]. For all main party index p ∈ {(1, 1), ..., (D, 2)}:
JxK(p1,p2) =

∑
i:ip1=p2

JxKi, JβK(p1,p2) =
∑

i:ip1=p2
JβKi, JaK(p1,p2) =

∑
i:ip1=p2

JaKi and JcK(p1,p2) =
∑

i:ip1=p2
JcKi.

Step 2: First Challenge

9. The verifier sends
(
(γj)j∈[1,n], ϵ

)
∈ Fn

qm·η × Fqm·η to the prover.

Step 3: First Response
10. For each dimension k ∈ [1, D], the prover executes the algorithm in Fig. 6 on the set of the main parties of the dimension.
This set is denoted Pk. He computes

(
(JαK(k,i), JvK(k,i))i∈[1,2], Hk

)
←− Algorithm Fig.6(

(
Pk, (γj)j∈[1,n], ϵ

)
. He only needs

to execute the algorithm D + 1 times, as explained above.
11. The prover commits the executions: h1 = H(H1, ..., HD).

Step 4: Second Challenge

12. The verifier gets a random leaf i∗ ∈ [1, N ] and sends it to the prover.

Step 5: Second Response and Verification

13. The prover sends to the verifier:
(
cmti∗ , JαKi∗ , (statej , ρj)j ̸=i∗

)
, where (statej , ρj)j ̸=i∗ corresponds to the sibling path to

this commitment. If i∗ ̸= N , he also has to send JxKN , JβKN and JcKN .

14. The verifier can deduce all the leaves (with the exception of index i∗), and recover h0 using the sibling path and cmti∗ .

15. For all dimension k ∈ [1, D], the verifier runs the algorithm in Fig. 7 to get (JαK(k,i), JvK(k,i))i∈[1,2] and Hk. Then he
checks that

- v = 0 for all dimensions.

- α is the same for all dimensions.

- h1 = H(H1, ..., HD)

Fig. 5: MinRank Proof of Knowledge with additive-sharing MPCitH
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Inputs: A set of main shares for the dimension k:
(
(JxK(k,i), JβK(k,i), JaK(k,i), JcK(k,i))

)
i∈[1,2]

and a protocol challenge(
(γj)j∈[1,n], ϵ

)
Outputs: A set of main shares

(
α(k,i), JvK(k,i)

)
i∈[1,2]

and a commitment Hk of the execution

For each main party i ∈ {1, 2}:

- Compute JEK(k,i) = M0 +
∑k

j=1[[xj ]](k,i)Mj

- Set [[ej ]](k,i) as the element in Fqm associated to the j-th column of [[E]](k,i)

- Compute [[z]](k,i) = −
∑n

j=1 γj · [[ej ]]
qr

(k,i)

For l from 0 to r − 1:

⋄ Compute [[wl]](k,i) =
∑n

j=1 γj · [[ej ]]
ql

(k,i)

- Compute [[α]](k,i) = ϵ · [[w]](k,i) + [[a]](k,i) and reveal α

- Compute [[v]](k,i) = ϵ · [[z]](k,i) − ⟨α, [[β]](k,i)⟩ − [[c]](k,i)

Compute Hk = H
(
(JαK(k,i), JvK(k,i))i∈[1,2]

)
Fig. 6: Execution of the MPC protocol Πη on a set of main shares

Inputs: A leaf i∗ that one does not reveal. ĩ is the index depending on the leaf i∗. The share JαKi∗ , and all the main parties
shares

(
(JxK(k,i), JβK(k,i), JaK(k,i), JcK(k,i))

)
i∈[1,2]

. For i = ĩ, the main shares correspond to the usual main party shares,
except the share i∗ is missing.
Outputs: (JαK(k,i), JvK(k,i))i∈[1,2] and a commitment Hk of the execution

For i ∈ [1, 2]:

If i = ĩ:
Set JvKi∗ such that v = 0 and compute JvK(k,̃i)
Compute JαK(k,̃i) =

∑
j:jk=ĩ,j ̸=i∗JαKj+JαKi∗ where

∑
j:jk=ĩ,j ̸=i∗JαKj is obtained by applying Πη to the partially-

aggregated input shares.

Else:
Do the same computations as in Πη to obtain the correct shares JαK(k,i) and JvK(k,i)

Compute Hk = H
(
(JαK(k,i), JvK(k,i))i∈[1,2]

)
Fig. 7: Check the executions of the MPC protocol Πη on the main parties
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Inputs

- Secret key sk = (x) ∈ Fk
q , (E) ∈ Fm×n

q such that WR(E) ≤ r

- Public data M0, . . . ,Mk ∈ Fm×n
q with E = M0 +

∑k
i=1 Mixi

- Message m ∈ {0, 1}∗

Step 1: Commitment

1. Sample a random salt value salt
$←− {0, 1}2λ

2. Set U = ⟨e1, . . . , en⟩ and compute β = (βk)k∈[0,r−1] ∈ Fr
qm the coefficients of the annihilator q-polynomial L(X) associated

to E such that L(X) =
∏

u∈U (X − u) = Xqr +
∑r−1

k=0 βk · Xqk and ∀j ∈ [1, n], L(ej) = 0 where each ej is the element in
Fqm associated to the j-th column of E

3. For each iteration e ∈ [1, τ ]:

- Sample a root seed: seed(e) ← {0, 1}λ

- Expand root seed recursively with TreePRG to obtain N seeds and randomness (seed
(e)
i′ , ρi′ )

For each i ∈ [1, N ]:

If i ̸= N :

⋄ Sample (JxK(e)i , JβK(e)i , JaK(e)i JcK(e)i )
$,seed

(e)
i←− PRG where PRG is a pseudo-random generator

⋄ state(e)i = seed
(e)
i

Else:

⋄ Sample JaK(e)N

$,seed
(e)
N←− PRG

⋄ Compute JxK(e)N = x−
∑N−1

i=1 JxK(e)i , JβK(e)N = β −
∑N−1

i=1 JβK(e)i and JcK(e)N = −⟨a,β⟩ −
∑N−1

i=1 JcK(e)i

⋄ state(e)N = (seed
(e)
N , JxK(e)N , JβK(e)N , JcK(e)N )

- Compute cmt
(e)
i = H0(salt, e, i, state

(e)
i )

4. For all main party index p = (p1, p2) ∈ {(1, 1), ...(D, 2)}: JxK(p1,p2) =
∑

i:ip1=p2
JxKi, JβK(p1,p2) =

∑
i:ip1=p2

JβKi,
JaK(p1,p2) =

∑
i:ip1=p2

JaKi and JcK(p1,p2) =
∑

i:ip1=p2
JcKi.

5. Compute and commit h
(e)
0 = H1(salt, e, cmt

(e)
1 , ..., cmt

(e)
N )

6. Compute h1 = H2

(
salt,m, h

(1)
0 , ..., h

(τ)
0

)
Step 2: First Challenge

7. Sample
(
(γ

(e)
j )j∈[1,n], ϵ

(e)
)
e∈[1,τ ]

$←− PRG(h1) where
(
(γ

(e)
j )j∈[1,n], ϵ

(e)
)
e∈[1,τ ]

∈ (Fn
qm·η × Fqm·η )τ

Step 3: First Response

8. For each iteration e ∈ [1, τ ]:

For each each dimension k ∈ [1, D]:

- Execute the algorithm in Fig.6 to obtain
(
(Jα(e)K(k,i))i∈[1,2], (Jv(e)K(k,i))i∈[1,2]

)
and H

(e)
k , with the hash function H3

9. Compute h2 = H4(m, pk, salt, h1, (JH
(e)
1 K . . . JH(e)

D K)e∈[1,τ ])

Step 4: Second Challenge

10. Sample i∗(e)
$←− PRG(h2) where i∗(e) ∈ [1, N ]τ

Step 5: Second Response

11.For each iteration e ∈ [1, τ ]:

- Compute rsp(e) =
(
(statej)

(e)
j ̸=i∗ , cmti∗(e) , Jα

(e)Ki∗(e)
)

where (statej)
(e)
j ̸=i∗ corresponds to the sibling path. If i∗ ̸= N , he

also has to send JxKN , JβKN and JcKN .

12. Output σ =
(
salt, h1, h2, (rsp(e))e∈[1,τ ]

)
Fig. 8: MIRA Signature Scheme based on additive sharing MPCitH - Signature Algorithm
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Inputs

- Public data M0, . . . ,Mk ∈ Fm×n
q such that there is x ∈ Fk

q such that E = M0 +
∑k

i=1(Mixi) and WR(E) ≤ r

- Message m ∈ {0, 1}∗

- Signature σ = (salt, h1, h2, ( ¯rsp(e))e∈[1,τ ])

Step 1: Parse signature

1. Sample
(
(γ

(e)
j )j∈[1,n], ϵ

(e)
)
e∈[1,τ ]

$←− PRG(h1) where
(
(γ

(e)
j )j∈[1,n], ϵ

(e)
)
e∈[1,τ ]

∈ (Fn
qm·η × Fqm·η )τ

2. Sample i∗(e)
$←− PRG(h2) where i∗(e) ∈ [1, N ]

3. Parse
(
(statej)

(e)
j ̸=i∗ , cmti∗(e) , Jα

(e)Ki∗(e)
)
← rsp(e)

Step 2: Recompute h1

4. For each iteration e ∈ [1, τ ]:

- For each i ̸= i∗(e):

⋄ cmt
(e)
i = H0(salt, e, i, state

(e)
i )

- Compute h
(e)
0 = H1

(
salt, e, cmt

(e)
1 , ..., cmt

(e)
N

)
5. Compute h̄1 = H2

(
salt,m, h

(1)
0 , ..., h

(τ)
0

)
Step 3: Recompute h2

6. For each iteration e ∈ [1, τ ]:

- Simulate MPC protocol Πη on main parties.

- For each dimension k ∈ [1, D]:

⋄ Run the algorithm in Fig. 7 to get
¯

H
(e)
k , in which Jα(e)Ki∗(e) is used to compute the share of α of the main party

relying on i∗.

7. Compute h̄2 = H4

(
m, pk, salt, h̄1,

( ¯
H

(e)
1 , ...,

¯
H

(e)
D

)
e∈[1,τ ]

)

Step 4: Verify signature

8. Return (h̄1 = h1) ∧ (h̄2 = h2)

Fig. 9: MIRA Signature Scheme based on additive MPCitH - Verification Algorithm
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3.2 Description of MIRA-Threshold

3.2.1 Proof of Knowledge with Threshold Secret Sharing

Once we have this zero-knowledge protocol (and signature scheme) with additive sharing, one may
wonder if it is possible to use other secret sharing schemes to build MPCitH-based signature schemes.
The answer is positive and given in [FR22]: we can use any threshold linear secret sharing scheme.
(Ligero [AHIV17] already considered Shamir’s secret sharing but this scheme is only interesting for
“medium-size circuits”, which is not the case of circuits involved to build signature schemes.) When
dealing with threshold secret sharing, we will consider (except when told otherwise) that we are
referring to Shamir’s secret sharing scheme. As reminded earlier (see Definition 8), in order to build
a sharing of a secret in this setting, one has to build the random polynomial with the secret as
the constant term, and then evaluate this polynomial in the evaluation points. Since most of our
secrets in our case are vectors, this has to be done for every coordinates, and so the notation can
be pretty heavy. For the sake of simplicity, this process is not made explicit in the description of
our protocols.

The protocol with threshold secret sharing works in the following way:

– Using a (ℓ+1, N)-threshold secret sharing scheme, the prover computes the shares of the inputs
of the protocol Πη, computes the commitments, and then computes the Merkle tree root of the
commitments;

– He then receives the first challenge, i.e, the randomness for the protocol Πη;

– He then chooses a set S of ℓ+ 1 parties, for which he executes the protocol Πη, and computes
the hash value of the executions;

– He then receives the second challenge. This challenge is a set I of ℓ parties (instead of just 1 as in
the additive protocol). For these ℓ parties, he sends the authentication path of the commitments,
and the elements to rebuild their shares. He then chooses one party, i∗, in S \ I, and reveal the
value JαKi∗ computed for this party;

– Thanks to this value, the verifier can recover everything he needs, and can then authenticate,
or not, the prover.

Note that the knowledge of ℓ shares provides no information on the secret, since we use a (ℓ+1, N)-
threshold secret sharing. Moreover, this method permits to reduce the number of operations, for the
cost a larger signature size (we refer to [FR22] for more details).

However, one limitation arises: when using Shamir’s secret sharings (or any low-threshold LSSS),
we need to have N ≤ q to share values of Fq. Finally, this gives us the proof of knowledge of Fig.10.

Let us look at the soundness of the protocol. If the probability of a false positive of the MPC proto-
col was equal to 0 (i.e, the probability of a false positive of Πη was 0), then a malicious prover (who
doesn’t know a solution of the MinRank instance) would need to cheat for exactly N − ℓ parties.
Indeed, if he cheated for less parties, then at least ℓ+1 shares would be consistent. Since we suppose
the probability of false-positive is 0, this means he would know a good witness. If he cheated for
more than N − ℓ parties, the verifier would always ask for the opening of a corrupted party, hence
he would always discover the cheat. This means that the malicious prover needs to cheat on exactly
N − ℓ parties, and the only way that the verifier is convinced is when the verifier asks the opening
of the exact set of the ℓ honest parties. This means that the probability that the verifier does not
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- Public data M0, . . . ,Mk ∈ Fm×n
q

The prover wants to convince the verifier that he knows a solution x ∈ Fk
q of the MinRank instance, i.e such as E =

M0 +
∑k

i=1 Mixi and WR(E) ≤ r

Step 1: Commitment
1. The prover builds a set of shares into a (ℓ + 1, N)−threshold secret sharing of x. The prover also builds shares of the
annihilator polynomial L(X) = Xqr +

∑r−1
i=0 βi ·Xqi by setting U = ⟨e1 . . . en⟩, where e = (e1, . . . , en) is the vector associated

to E = M0+
∑k

i=1 Mixi, and computing L(X) =
∏

u∈U (X−u) = Xqr +
∑r−1

i=0 βi(X
qi ). He also builds a vector a uniformly

sampled from Fr
qm·η , and c = −⟨β,a⟩. Each party takes one share of the previous elements.

2. For each i ∈ [1, N ]:

- statei = (JxKi, JβKi, JaKiJcKi)

3. The prover computes the commitments: cmti = Com
(
statei, ρi

)
, where ρi is a randomization sampled from {0, 1}λ for

each i ∈ [1, N ].

4. The prover computes and sends the Merkle tree root: h0 = Merkle(cmt1, · · · , cmtN )

Step 2: First Challenge

5. The verifier sends
(
(γj)j∈[1,n], ϵ

)
∈ Fn

qm·η × Fqm·η to the prover.

Step 3: First Response

6. The prover chooses a public subset S of parties such that |S| = ℓ+ 1:

7. The prover executes the algorithm described in Fig.11 for the shares i ∈ S, and obtains (JαKi, JvKi)i∈S .

8. The prover computes the value h1 = H ((JαKi, JvKi)i∈S)

Step 4: Second Challenge

9. The verifier sends a subset I ⊂ [1, N ] of parties such that |I| = ℓ to the prover

Step 5: Second Response
10. The prover sends (statei, ρi)i∈I , and the authentication path to these commitments, to allow the verifier to rebuild the
Merkle tree. The verifier deduces a value h̃0.
11. The prover chooses a public party i∗ ∈ S\I, and sends JαKi∗ to allow the verifier to recover α =
ReconstructI

⋃
{i∗}(JαKI ⋃

{i∗})

12. The verifier computes h̃1 by choosing JvKi∗ such that v = 0.

13. The verifier outputs ACCEPT if (h̃0, h̃1) = (h0, h1), REJECT otherwise.

Fig. 10: MinRank Proof of Knowledge based on Threshold MPCitH

detect the cheat is 1

(Nℓ )
.

However, p is not 0 in our case. We can make the same reasoning, and furthermore, consider this
false positive rate. We would expect to get a probability for a malicious prover to convince a verifier
of 1

(Nℓ )
+ (1− 1

(Nℓ )
) · p (We remind the reader that p = 2

qmη − 1
q2mη ).

Unfortunately, it is just a lower bound of the soundness of the protocol. As remarked in [FR22],
there is a more effective way for a malicious prover to cheat at the protocol, as we will see in the
proof of the theorem 2 in section 5.1.

3.2.2 MIRA-Threshold
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Inputs: A set of shares
(
JxKi, JβKi, JaKi, JcKi

)
i∈S

and a protocol challenge
(
(γj)j∈[1,n], ϵ

)
Outputs: A set of shares JvK and a commitment H of the execution

For each party i ∈ S:

- Compute JEKi = M0 +
∑k

j=1[[xj ]]iMj

- Set [[ej ]]i as the element in Fqm associated to the j-th column of [[E]]i

- Compute [[z]]i = −
∑n

j=1 γj · [[ej ]]
qr

i

- For k from 0 to r − 1:

⋄ Compute [[wk]]i =
∑n

j=1 γj · [[ej ]]
qk

i

- Compute [[α]]i = ϵ · [[w]]i + [[a]]i and reveal α

- Compute [[v]]i = ϵ · [[z]]i − ⟨α, [[β]]i⟩ − [[c]]i

The parties broadcast their shares of α and v

Fig. 11: Execution of the MPC protocol Πη on a set of shares

From the zero-knowledge protocol, we can deduce a signature scheme thanks to the Fiat-Shamir
transformation. The resulting scheme is non-interactive and we deterministically sample the chal-
lenge using a hash function. We must repeat the zero-knowledge protocol several times (τ times),
in order to achieve a certain level of security. The obtained signature scheme is described in Fig.12
and Fig.13.

We prove that the scheme is EUF-CMA secure in the proof of theorem 4 in 5.2.
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Inputs

- Public data M0, . . . ,Mk ∈ Fm×n
q

- Secret key sk = (x) ∈ Fk
q , (E) ∈ Fm×n

q such that WR(E) ≤ r and E = M0 +
∑k

i=1 Mixi

- Message m ∈ {0, 1}∗

Step 1: Commitment

1. Sample a random salt value salt
$←− {0, 1}2λ

2. Compute β = (βk)k∈[0,r−1] ∈ Fr
qm the coefficients of the annihilator q-polynomial L(X) associated to E such that

L(X) = Xqr +
∑r−1

k=0 βk(X
qk ) and ∀j ∈ [1, n], L(ej) = 0 where each ej is the element in Fqm associated to the j-th column

of E
3. For each iteration e ∈ [1, τ ]:

- Sample a(e) $←− Fr
qm·η and compute c(e) such that c(e) ∈ Fqm·η and c(e) = −⟨β,a(e)⟩

- For each party i ∈ [1, N ]:

⋄ Compute the (ℓ+ 1, N)-threshold sharings Jx(e)K, Jβ(e)K, Ja(e)K, Jc(e)K of x,β,a(e) and c(e)

⋄ Compute state
(e)
i = (Jx(e)Ki, Jβ(e)Ki, Ja(e)Ki, Jc(e)Ki) and cmt

(e)
i = H0(salt, e, i, state

(e)
i )

- Compute the Merkle tree root h
(e)
0 = Merkle(cmt

(e)
1 , · · · , cmt

(e)
N )

4. Compute h1 = H1(m, pk, salt, (h
(e)
0 )e∈[1,τ ])

Step 2: First Challenge

5. Sample
(
(γ

(e)
j )j∈[1,n], ϵ

(e)
)
e∈[1,τ ]

$←− PRG(h1) where
(
(γ

(e)
j )j∈[1,n], ϵ

(e)
)
e∈[1,τ ]

∈ (Fn
qm·η × Fqm·η )τ

Step 3: First Response

6. For each iteration e ∈ [1, τ ]:

- For each party i ∈ S with S a public subset of parties such that |S| = ℓ+ 1:

⋄ Compute JE(e)Ki = M0 +
∑k

j=1 MjJxjKi and set JejKi as the element in Fqm associated to the j-th column of JEK

⋄ Compute Jz(e)Ki = −
∑n

j=1 γj · Je
(e)
j Kq

r

i and ∀k ∈ [0, r − 1], Jw(e)
k Ki =

∑n
j=1 γj · Je

(e)
j Kq

k

i

⋄ Compute Jα(e)Ki = ϵ(e) · Jw(e)Ki + Ja(e)Ki and Jv(e)Ki = ϵ(e) · Jz(e)Ki − ⟨α(e), Jβ(e)Ki⟩ − Jc(e)Ki
7. Compute h2 = H2(m, pk, salt, h1, (Jα(e)Ki, Jv(e)Ki)i∈S,e∈[1,τ ])

Step 4: Second Challenge

8. Sample (I(e))e∈[1,τ ]
$←− PRG(h2) where (I(e))e∈[1,τ ] ∈ ({I ⊂ N | |I| = ℓ})τ

Step 5: Second Response

9. For each iteration e ∈ [1, τ ]:

- Choose deterministically a party i∗(e) ∈ S \ I(e) and compute Jα(e)Ki∗(e)

- Compute the authentication path auth(e) associated to root h
(e)
0 and (cmt

(e)
i )i∈I(e)

- Compute rsp(e) =
(
(Jx(e)Ki, Jβ(e)Ki, Ja(e)Ki, Jc(e)Ki)i∈I(e) , auth

(e), Jα(e)Ki∗(e)
)

10. Compute σ = (salt, h1, h2, (rsp(e))e∈[1,τ ])

Fig. 12: MIRA Signature Scheme based on Threshold MPCitH - Signature Algorithm
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Inputs

- Public data M0, . . . ,Mk ∈ Fm×n
q such that there is x ∈ Fk

q such that E = M0 +
∑k

i=1(Mixi) and WR(E) ≤ r

- Message m ∈ {0, 1}∗

- Signature σ = (salt, h1, h2, ( ¯rsp(e))e∈[1,τ ])

Step 1: Parse signature

1. Sample
(
(γ

(e)
j )j∈[1,n], ϵ

(e)
)
e∈[1,τ ]

$←− PRG(h1) where
(
(γ

(e)
j )j∈[1,n], ϵ

(e)
)
e∈[1,τ ]

∈ (Fn
qm·η × Fqm·η )τ

2. Sample (I(e))e∈[1,τ ]
$←− PRG(h2) where (I(e))e∈[1,τ ] ∈ ({I ⊂ N | |I| = ℓ})τ

3. For each iteration e ∈ [1, τ ]:

- Choose deterministically i∗(e) from S \ I(e)

- Parse ¯rsp(e) :=
(
(Jx̄(e)Ki, Jβ̄(e)Ki, Jā(e)Ki, Jc̄(e)Ki)i∈Ī(e) ,

¯auth
(e)

, Jᾱ(e)Ki∗(e)
)

Step 1: Recompute h1

4. For each iteration e ∈ [1, τ ]:

- For each party i ∈ I(e):

⋄ Compute ¯state
(e)
i = (Jx̄(e)Ki, Jβ̄(e)Ki, Jā(e)Ki, Jc̄(e)Ki) and ¯cmt

(e)
i = H0(salt, e, i, ¯state

(e)
i )

- Compute the Merkle tree root h̄
(e)
0 from ( ¯cmt

(e)
i )i∈I(e) and ¯auth

(e)

5. Compute h̄1 = H1(m, pk, salt, (h̄
(e)
0 )e∈[1,τ ])

Step 2: Recompute h2

6. For each iteration e ∈ [1, τ ]:

- For each party i ∈ I(e):

⋄ Compute JE(e)Ki = M0 +
∑k

j=1 MjJxjKi and set JejKi as the element in Fqm associated to the j-th column of JEK

⋄ Compute Jz(e)Ki = −
∑n

j=1 γj · Je
(e)
j Kq

r

i and ∀k ∈ [0, r − 1], Jw(e)
k Ki =

∑n
j=1 γj · Je

(e)
j Kq

k

i

⋄ Compute Jα(e)Ki = ϵ(e) · Jw(e)Ki + Ja(e)Ki
- Reconstruct ᾱ(e) and (Jᾱ(e)Ki)i∈S from (Jᾱ(e)Ki)i∈I(e) and Jᾱ(e)Ki∗(e)

7. For each iteration e ∈ [1, τ ]:

- For each party i ∈ I(e):

⋄ Compute Jv̄(e)Ki = ϵ(e) · Jz̄(e)Ki − ⟨ᾱ(e), Jβ̄(e)Ki⟩ − Jc̄(e)Ki
- Reconstruct (Jv̄(e)Ki)i∈S from (Jv̄(e)Ki)i∈I(e) and v̄(e) = 0

8. Compute h̄2 = H2(m, pk, salt, h̄1, (Jᾱ(e)Ki, Jv̄(e)Ki)i∈S,e∈[1,τ ])

Step 5: Verify signature

9. Return (h̄1 = h1) ∧ (h̄2 = h2)

Fig. 13: MIRA Signature Scheme based on Threshold MPCitH - Verification Algorithm
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4 Parameter Sets

4.1 Parameters Choice

Our signature scheme uses the following parameters:

– the power of a prime number, q ∈ N, to build Fq;

– a positive integer, m ∈ N, the number of rows of our matrices;

– a positive integer, n ∈ N, the number of columns of our matrices;

– a positive integer, k ∈ N, the length of the secret vector x, and k + 1 is the number of matrices
in the public key;

– a positive integer, r ∈ N, the rank of the matrix E;

– a positive integer, N ∈ N, the number of parties simulated in the MPC protocol;

– a positive integer, η ∈ N, to build Fqm·η ;

– a positive integer, τ ∈ N, the number of rounds in the signature.

In the LSSS-based scheme, there is also a parameter ℓ ∈ N, which is the value of the privacy
threshold of the used linear secret sharing scheme.

In order to choose the parameters, we need to consider:

– The security of the MinRank instance, i.e. the complexity of the attacks on the chosen MinRank
parameters;

– The security of the signature scheme, i.e. the cost of the best forgery attack;

– The size of the signature.

We propose the following parameters for the MinRank instance, for the security level which corre-
sponds to the NIST Security Level 1:

– For the additive-based scheme: (q,m, n, k, r) = (16, 16, 16, 120, 5);

– For the LSSS-based scheme: (q,m, n, k, r) = (251, 12, 13, 55, 5).

In the first scheme, we take the value of q = 16, since it leads to almost the shortest signature size
and has the advantage to be easily serialized (two elements of Fq can be stored in a byte). However,
in the second scheme, we take q = 251 since we have the constraint N ≤ q with Shamir’s secret
sharing (since each share is associated to a distinct field element, we can not have more shares than
the size of the field). Since the protocol is more efficient when N is large, we need to take a larger
value of q in the threshold-based scheme compared to the additive-based scheme. The parameters
(m,n, k, r) are then chosen such that the MinRank instances are secure against the existing attacks,
that we present shortly in section 6.2, and such that k + 1 = (m − r)(n − r), as it corresponds
exactly to the Gilbert-Varshamov bound.

Finally, we need to choose τ and η such that our signature scheme resists to the forgery attack
described by [KZ20]. More precisely, in the additive-based scheme, we select them such that

costforge = min
0≤τ ′≤τ

{
1∑τ

i=τ ′
(
τ
i

)
pi(1− p)τ−i

+N τ−τ ′
}

(3)
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is higher than 2λ, with p = 2
qmη − 1

q2mη . In the case of the threshold protocol, this formula becomes:

costforge = min
0≤τ ′≤τ

{
1∑τ

i=τ ′
(
τ
i

)
pi(1− p)τ−i

+

(
N

ℓ

)τ−τ ′
}

(4)

with p = ( 2
qmη − 1

q2mη ) ·
(

N
ℓ+1

)
. The factor

(
N
ℓ+1

)
in the value of p comes from the fact that an attacker

can commit an invalid sharing of the MPC inputs in the first step of the scheme (see [FR22]
for details), and the addition of

(
N
ℓ

)τ−τ ′
comes from the fact that there are

(
N
ℓ

)
possible second

challenges.

In any case, as long as the forgery cost is high enough, we can just take the parameters which lead
to the shortest signatures. To proceed, we need to compute the theoretical size of the signature,
which we will do in the following section.

4.2 Key and Signature Sizes

4.2.1 Additive Protocol Signature Size

For the additive-sharing protocol (Fig.8), we have to send τ times the following elements:

– comi∗ ∈ {0, 1}2λ;

– (state
(e)
i′ )i′ ̸=i∗ ;

– [[α]] ∈ Fr
qmη ;

– [[x]] ∈ Fk
q ;

– [[β]] ∈ Fr
qm ;

– [[c]] ∈ Fqmη .

Note that for each e ∈ [1, τ ], we do not send all the N − 1 states (state
(e)
i′ )i′ ̸=i∗ . To reveal the state

of all the parties except one, the prover only need to send the sibling path of the hidden leaf party
in the seed tree of TreePRG. Thus, the number of revealed seeds in {0, 1}λ is equal to the depth of
the tree, which is D = log2N . We also add h1, h2, and salt ∈ {0, 1}2λ, which add up to 6λ. This
gives us the following signature size (in bits):

|σ| = 6λ︸︷︷︸
salt, h1, h2

+τ ·

( k︸︷︷︸
x

+ r ×m︸ ︷︷ ︸
β

+(r + 1)×m× η︸ ︷︷ ︸
α and c

)
· log2 q + 2λ+Dλ︸ ︷︷ ︸

additive MPCitH

 .

We then obtain the following sizes:

NIST Security Level q m n k r N τ η

Public Key size
(Bytes)

Secret Key size
(Bytes)

Signature size
(Bytes)

1 16 16 16 120 5 256 18 1 84 16 5.640
3 16 19 19 168 6 256 26 1 121 24 11.779
5 16 23 22 271 6 256 34 1 150 32 20.762
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4.2.2 Threshold Protocol Signature Size

For the threshold sharing protocol (Fig.12), we have to send τ times the following elements:

– ℓ times JxK ∈ Fk
q ;

– ℓ times JβK ∈ Fr
qm ;

– ℓ times JaK ∈ Fr
qm·η ;

– ℓ times JcK ∈ Fqm ;

– JαK ∈ Fr
qm·η ;

– the authentification path auth.

Let us remark that we cannot use a TreePRG for the threshold scheme, since the shares of a
low-threshold sharing are correlated.

For the authentification path, we do not need to send all the states. Indeed, to allow the verification
of ℓ states, the prover sends their sibling paths which at most contain ℓ · log2(Nℓ ) labels in total
(each of 2λ bits). In the sizes we will give, we are going to use the average cost (with low deviation)
of sending the sibling paths. We also send h1, h2, and salt ∈ {0, 1}2λ, which add up to 6λ. We find
the following signature size (in bits):

|σ| ≤ 6λ︸︷︷︸
salt,h1,h2

+τ ·
((

ℓ · ( k︸︷︷︸
x

+ r ×m︸ ︷︷ ︸
β

+(r + 1)×m× η︸ ︷︷ ︸
a and c

) + r ×m× η︸ ︷︷ ︸
α

)
· log2(q) + 2λ · ℓ log2(

N

ℓ
)︸ ︷︷ ︸

Threshold MPCitH

)
.

We then obtain the following sizes:

NIST Security Level q m n k r N ℓ τ η

Public Key size
(Bytes)

Secret Key size
(Bytes)

Signature size
(Bytes)

1 251 12 13 55 5 251 3 7 1 117 16 8.318
3 251 16 15 109 5 251 3 10 1 155 24 17.797
5 251 16 17 109 6 251 3 14 1 195 32 30.381

5 Security Analysis

5.1 Security Proofs for the Proofs of Knowledge

5.1.1 Security Proofs for the Additive Protocol

We first need to prove that the proof of knowledge is sound and zero-knowledge:

Theorem 1. The MinRank Proof of Knowledge protocol based on additive secret sharing described
in Fig.5 has the following properties:

– Completeness: A prover P who has the knowledge of a solution of a MinRank instance will
always be accepted by the verifier.

– Soundness: Suppose that there is an efficient prover P̃ that convinces the verifier to accept with
probability

ϵ̃ > ϵ
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with
ϵ =

1

N
+ p · (1− 1

N
)

where ϵ is the soundness of the protocol in Fig.5, and p is the false positive rate of the MPC
protocol used, i.e, 2

qmη − 1
q2mη .

Then, there is an efficient probabilistic extraction algorithm, E that, given a rewindable black-box
access to P̃, outputs either a solution of the MinRank instance, or a commitment collision by
making a number of calls to P̃ which is bounded by

4

ϵ̃− ϵ
·
(
1 + ϵ̃ · 2 ln(2)

ϵ̃− ϵ

)
– Honest-Verifier Zero-Knowledge If the pseudo-random generator algorithm PRG and the

commitment Com are indistinguishable from the uniform random distribution, then the algorithm
5 is Honest-Verifier Zero Knowledge.

Proof.
Completeness:
By construction, if the prover has knowledge of a solution of the MinRank instance, he will always
be able to execute the protocol correctly, i.e, he will always obtain α such that v = 0 when executing
the MPC protocol Πη, this is obvious.

Soundness:
We first need to establish that the probability for the malicious prover (who has no knowledge
of the solution of the MinRank instance used and thus uses a bad witness) to cheat is at most
ϵ = 1

N + (1− 1
N ) · p.

There are two situations where a malicious prover can be accepted by the verifier if he commits a
bad witness:

– He obtains the value v = 0 when executing the MPC protocol;

– The verifier believes that the value obtained v is 0.

We suppose here that the malicious prover commits a bad witness. Then, the first case occurs with
probability p = 2

qmη − 1
q2mη since it is the false positive rate of the protocol Πη.

In the second case, the malicious prover needs to alter the communications in order to pass the
verification. More precisely, he needs to alter the value of some share(s) of α in every MPC protocol.
Among the N leaf shares, only one share, i∗, will not be revealed by the prover. This means that, if
he cheats on more than one share, the verifier will notice the cheating, and thus rejects the proof.
However, if he cheats on zero share, he will be rejected as well since the value v will not be 0 since
the malicious prover doesn’t have a good witness x. This means the malicious prover can only cheat
on one share exactly. However, cheating on one share means cheating on one main share on all the D
dimensions, as the main shares are the sum of leaves that have the same index ij along the current
dimension. This means that the cheating is not detected if and only if the share the prover cheated
on is i∗, since there exists a bijection between leaves and the set of their associated main party. This
happens with probability 1

N (as the prover doesn’t know the value of i∗ before cheating).
This is the only pattern to cheat and avoid detection (as shown just now, we cannot cheat on more
than one leaf), since cheating on 1 main party for each dimension is exactly equivalent to cheating
on 1 leaf party.
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Thus, since there is no other cheating pattern possible, the probability for the malicious prover to
be authenticated is at most p+ (1− p) · 1

N = 1
N + (1− 1

N ) · p.

We then need to show the soundness property in the theorem:
let T1 and T2 two transcripts with the same commitments, i.e, the same h0 = H(cmt1, . . . , cmtN ) ,
but the second challenges i∗1 (for T1) and i∗2 (for T2) differ.

Then, we have two possibilities:

– JxK, JβK, JaK and JcK differ in the two transcripts, and the malicious prover found a collision in
the commitment hash;

– the openings of the commitments are equal, and thus the shares JxK, JβK, JaK and JcK are equal
in the transcripts.

We will only consider the second case, as we suppose that we use secure hash functions and secure
commitment schemes.

Then, since i∗1 and i∗2 are different challenges and the commitments are the same, it is possible to
recover the witness. We will then show we can build an extraction algorithm E that obtains a good
witness.

x is called a good witness if it is a solution to the MinRank instance defined by public data, i.e.
E = M0 +

∑k
i=1Mixi and WR(E) ≤ r. Let Rh the random variable associated to the randomness

in initial commitment, and rh is the value it takes. For that, we will use the Splitting Lemma as is
done in [FJR22] and [AMGH+22].

To get these two transcripts, the extraction algorithm E does the following:

– Run the protocol with randomness rh with the verifier until T1 is found, i.e, T1 is the first
accepted transcript found by P̃. We note i∗1 the leaf challenge obtained;

– Then, using the same randomness rh that was used, i.e, building the same commitments, E
repeats the process L times (where the value of L is made explicit hereafter) until finding
another accepted transcript, T2, for which the leaf challenge, i∗2, is different than i∗1;

– If such a transcript T2 is found, then E recovers the witness, otherwise, if no such transcript is
found after L attempts, E returns to the first step and tries with another rh.

In order to establish the soundness of the protocol, we need to estimate the number of times a
malicious prover needs to repeat the authentication protocol in order to get the good witness x.
Let δ ∈]0, 1[, and ϵ̃ such that (1−δ)·ϵ̃ > ϵ. We will define the randomness rh to be a good randomness
if Pr[SuccP̃ |rh] > (1− δ) · ϵ̃.

By the Splitting Lemma (Lemma 1), we have that Pr[rh good|SuccP̃ ] ≥ δ. This means that after 1
δ

accepted transcripts, we have good odds to have a good randomness. Furthermore, we know that if
the malicious prover uses a bad witness, his probability to cheat is bounded from above by ϵ. Since
the probability of success is greater than ϵ, this means that a good witness has been used (when rh
is good).

To continue this proof, we will look at the probability to have, given an accepted transcript T1, a
second accepted transcript, T2, with a challenge different than the one in T1. This means we are
looking to bound from below the probability:

Pr[SuccP̃ ∩(i
∗
1 ̸= i∗2)|rh good]

30



Trivially, we know that this probability is equal to the probability of success knowing that rh is
good, minus the probability of success with i∗1 = i∗2 knowing rh is good. This means:

Pr[SuccP̃ ∩(i∗1 ̸= i∗2)|rh good] = Pr[SuccP̃ |rh good]− Pr[SuccP̃ ∩(i∗1 = i∗2)|rh good]

≥ Pr[SuccP̃ |rh good]− 1

N

≥ (1− δ)ϵ̃− 1

N

≥ (1− δ)ϵ̃− ϵ (since ϵ ≥ 1

N
trivially)

Now that we have this lower bound, we want to estimate the number of times one has to repeat the
protocol to find T2. For that, we take the opposite probability, i.e, 1−Pr[SuccP̃ ∩(i

∗
1 ̸= i∗2)|rh good],

which is lower bounded by 1 − ((1 − δ)ϵ̃ − ϵ). We now want a probability of 1
2 at least of success

after L tries of the authentication protocol. This means then that we want:(
1− Pr[SuccP̃ ∩(i

∗
1 ̸= i∗2)|rh good]

)L
<

1

2
L · ln(1− ((1− δ)ϵ̃− ϵ)) < − ln(2)

L > − ln(2)

ln(1− ((1− δ)ϵ̃− ϵ))

One obtains the following majoration for the number of calls to P̃:

L >
ln(2)

ln( 1
1−((1−δ)ϵ̃−ϵ))

≈ ln(2)

(1− δ)ϵ̃− ϵ

This means that, when repeating the protocol L times, the probability to get the second transcript
is higher than 1

2 .

Finally, we can look at the number of protocol repetitions that has to be done. To quickly remind
the steps of the extraction:

– P̃ repeats the authentication protocol until he finds an accepted transcript T1, where the com-
mitments are generated by rh, and with second challenge i∗1;

– When T1 is found, repeat the protocol with the same value rh, L times. After that, P̃ has more
than 1

2 chance of being successful. If he is not, he repeats from the first step of the procedure.

We will note E(P̃) the number of calls the extractor E has to make to P̃. After L calls (to find T2),
if rh is good (which happens with probability δ), we have 1

2 chance of not finding T2. However, if
rh is not good (with probability 1− δ), then we can consider that T2 is never found.

Thus, Pr[no T2|SuccP̃ ] =
δ
2 + (1 − δ) = 1 − δ

2 . If that happens, then, P̃ has to return to the first
step, i.e, find T1 again. This means:

E(P̃) ≤ 1 +
(
(1− Pr[SuccP̃ ])E(P̃)

)
+ Pr[SuccP̃ ]

(
L+ (1− δ

2
)E(P̃)

)

Obviously, P̃ needs to run at least once. Then, we need to add to that the number of times expected
before finding T1, and then, the number of times expected before finding T2.
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Since Pr[SuccP̃ ] = ϵ̃ (by assumption), we can replace, and simplify the expression. We find then:

E(P̃) ≤ 1 +
(
(1− ϵ̃ · E(P̃)

)
+ ϵ̃ ·

(
L+ (1− δ

2
) · E(P̃)

)
E(P̃) ≤ 1 + E(P̃)− ϵ̃ · E(P̃) + ϵ̃ · L+ ϵ̃ · E(P̃)− ϵ̃ · δ

2
· E(P̃)

ϵ̃ · δ
2
· E(P̃) ≤ 1 + ϵ̃ · L

E(P̃) ≤ 2

ϵ̃ · δ

(
1 + ϵ̃ · L

)
=

2

ϵ̃ · δ

(
1 + ϵ̃ · ln(2)

(1− δ)ϵ̃− ϵ

)

Since this equality holds for any δ ∈]0, 1[, we can take δ such that (1− δ)ϵ̃ = 1
2(ϵ̃+ ϵ), and thus, we

obtain the result:

E(P̃) ≤ 4

ϵ̃− ϵ
·
(
1 + 2ϵ̃ · ln(2)

ϵ̃− ϵ

)

This means we found an upper bound on the number of calls the extractor E has to make to P̃
before retrieving a good witness, in the case where the probability to cheat was higher than ϵ.

Honest-Verifier Zero-Knowledge:
Consider a simulator, described in Fig. 14, which produces the transcript responses (h0, ch1, h1,
ch2, rsp). We demonstrate that this simulator produces indistinguishable transcripts from the real
distribution (the one that we would obtain if it were generated by an honest prover who knows x)
by considering a succession of simulators: we begin by a simulator which produces true transcripts,
and and change it gradually until arriving the following simulator. We explains why the distribution
of transcripts is always the same at each step.

32



- Public data M0, . . . ,Mk ∈ Fm×n
q

Step 1: Sample challenges

1. Sample challenges:

- First challenge: ch1 =
(
(γj)j∈[1,n], ϵ

) $←− Fn
qm·η × Fqm·η

- Second challenge: ch2 = i∗
$←− [1, N ]

Step 2: Compute shares and their commitments

2. Sample a seed for pseudo-random generator: seed $←− {0, 1}λ

3. Expand root seed recursively using TreePRG to obtain N leafs and seeds (seedi′ , ρi′ )

4. For each i ∈ [1, N ] \ i∗:

- Sample JaKi
$,seedi←− Fr

qm·η

If i ̸= N

⋄ Sample (JxKi, JβKi, JcKi)
$,seedi←− PRG

⋄ statei = seedi

If i = N :

⋄ Sample (JxKN , JβKN , JaKN )
$←− Fk

q × Fr
qm × Fr

qm·η

⋄ auxN = (JxKN , JβKN , JaKN )

⋄ stateN =
(
seedN , auxN

)
- Simulate the computation of the party i to get JαKi and JvKi

5. For the party i∗:

- JαKi∗
$←− Fr

qm·η

- JvKi∗ = −
∑

i ̸=i∗JvKi

- cmti∗
$←− {0, 1}λ

6. Compute the commitments: cmti = Com
(
statei, ρi

)
.

7. Compute the commitment: h0 = H(cmt1, · · · , cmtN ).

9. For each main party p ∈ [1, D]× [1, 2]: compute Jα′Kp and Jv′Kp

10. For each dimension k ∈ [1, D]: compute Hk = H
(
(Jα′K(k,i), Jv′K(k,i))i∈[1,2]

)
11. Compute h1 = H(H1, ..., HD)

Step 3: Output transcript

12. The prover outputs the transcript (h0, ch1, rsp1, ch2, rsp2), where rsp1 = h1 and rsp2 = ((cmti∗ ), Jα′Ki∗ , (statej , ρj)j ̸=i∗ ).
If i∗ ̸= N , he also has to send JxKN , JβKN and JcKN .

Fig. 14: HVZK simulator of the PoK with additive sharing and hypercube optimization

– Simulator 0 (real world): it takes in input the witness x and the challenges ch1 =
(
(γj)j∈[1,n], ϵ

)
and ch2 = i∗. It worrectly executes the algorithm 3, hence its output is the correct distribution.

– Simulator 1: Same as the Simulator 0, but uses true randomness instead of seed-derived
randomness for leaf i∗.
If i∗ = N , the leafs JxKN , JβKN , JcKN are computed as in the MPC protocol.
The pseudo-random generator is supposed to be (t,ϵPRG)-secured, its outputs are indistinguish-
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able from the uniform distribution. Since the principal parts correspond to the sum of a certain
number of leaves whose distributions are indistinguishable from that of the real worlds, their
distribution is also indistinguishable.

– Simulator 2: Replace the leafs JxKN , JβKN , JcKN in Simulator 1 by uniformly sampled values.
Compute JvKi∗ = −

∑
i ̸=i∗JvKi. Note that this simulator becomes independent from the secret

witness x.
If i∗ = N , it only impacts the shares JαKi∗ and JvKi∗ . Note that this change doesn’t alter the
uniform distribution of these values. It doesn’t alter the distribution of any other leaf.
If i∗ ̸= N , it only impacts (JxKN , JβKN , JcKN ) in the simulated response and the values computed
from them in the MPC protocol. It doesn’t alter the distribution of other leaves. We observe
that the shares in (JxKN , JβKN , JcKN ) are calculated by adding a randomness value from each
seed of party i ̸= i∗, which correspond to adding a uniform random value from seedi∗ . Since this
distribution was uniform in Simulator 1, the output distributions are the same. Remember
that this does not change the distributions of the main parts for the same reasons as before.

– Simulator 3: Rather than computing the value of JαKi∗ as in the MPC protocol, sample it
uniformly from Fr

qm·η . As in the previous simulator, it doesn’t change their output distribution.

As such, the output of the simulator is indistinguishable from the real distribution.

5.1.2 Security Proofs for the Threshold Sharing Protocol

Theorem 2. The MinRank Proof of Knowledge protocol based on threshold secret sharing described
in Fig.10 has the following properties:

– Completeness: A prover P who has the knowledge of a solution of a MinRank instance will
always be accepted by the verifier.

– Soundness: Suppose that there is an efficient prover P̃ that convinces the verifier to accept with
probability

ϵ̃ > ϵ

with

ϵ =
1(
N
ℓ

) + p · ℓ · (N − ℓ)

ℓ+ 1

where ϵ is the soundness of the protocol in Fig.10, and p is the soundness of the MPC protocol
used, i.e, 2

qmη − 1
q2mη .

Then, there is an efficient probabilistic extraction algorithm E that, given a rewindable black-box
access to P̃, outputs either a solution of the MinRank instance, or a commitment collision by
making a number of calls to P̃ which is bounded by

4

ϵ̃− ϵ
·
(
1 + ϵ̃ · 8 · (N − ℓ)

ϵ̃− ϵ

)
– Honest-Verifier Zero-Knowledge: If the pseudo-random generator algorithm PRG and the

commitment Com are indistinguishable from the uniform random distribution, then the algorithm
10 is Honest-Verifier Zero Knowledge.
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Proof.
Completeness:
By construction, if the prover has knowledge of a solution of the MinRank instance, he will always
be able to execute the protocol correctly, i.e, he will always obtain α such that v = 0 when executing
the MPC protocol Πη, this is obvious.

Soundness:

The proof is rather long and complex. For this proof, we refer to [FR22], who proved this theorem
for any MPC protocol and MPCitH protocol, as long as they lie in their model. Our threshold
protocol is an exact application of their model. Hence, the proof of the above theorem is the same
as the proof in appendix D of [FR22].

Honest-Verifier Zero-Knowledge:

The proof is similar to what is done in the case of the additive sharing, and holds by the t-privacy
of the MPC protocol, as well as the hiding property of the commitments. Moreover, a proof in the
general case is done in [FR22, Appendix C]. Since we are in their model of MPCitH, the proof
applies here as well.

5.2 Security proofs for the Signature Schemes

The proofs follow in large parts the proofs in [AMGH+22], [FJR22] and [FR22].

5.2.1 Security Analysis of MIRA-Additive We need to prove that the signature scheme is
EUF-CMA secure:

Theorem 3. Let the PRG used be (t, ϵPRG)-secure, and ϵMR the advantage an adversary has over
the MinRank problem. Consider H0,H1,H2,H3,H4 behave as random oracles, with an output of 2λ
bits. Then, if an adversary makes qi queries to Hi, qS queries to the signing oracle, the probability
for him to produce a forgery (EUF-CMA) for the MIRA Additive Signature Scheme (Fig.8) is:

Pr[Forge] ≤ 3 · (q + τ ·N · qS)2

2 · 22λ
+

qS · (qS + 5q)

22λ
+ ϵPRG + Pr[X + Y = τ ] + ϵMR

where τ is the number of rounds of the signature, p = 1
qmη +

(
1− 1

qmη

)
1

qmη , X = maxi∈[0,q2]{Xi}
with Xi ∼ B(τ, p), and Y = maxi∈[0,q4]{Yi} with Yi ∼ B(τ −X, 1

N ).

Proof. In this proof, we will adopt a game hopping strategy in order to find the upper bound.
The first game will be the access to the standard signing oracle by the adversary A. We will then
game hop in order to eliminate the cases where collisions happen, and, through some other games,
we will manage to find an upper bound.
We note Pri[Forge] the probability of forgery when considering game i. The aim of the proof is to
find an upper bound on Pr1[Forge].
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– Game 1
This is the interaction between A and the real signature scheme.
KeyGen generates (M0, . . . ,Mk,x) and A receives M0, . . . ,Mk. A can make queries to each
Hi independently, and can make signing queries. At the end of the attack, A outputs a mes-
sage/signature pair, (m,σ). The event Forge happens when σ is a valid signature of m and no
signature of m has been queried to the signing oracle.

– Game 2
In this game, we add a condition to the success of the attacker. The condition we add is that if
there is a collision between outputs of H0, or H1, or H3, then, the forgery isn’t valid.
The first step is to look at the number of times every Hi is called when calling the signing oracle.
For H0, we make τ ·N queries. The signing oracle contains also τ calls to H1, one to H2, τ ·D
to H3, and finally, a single one to H4.
The number of queries to H0 or H1 or H3 is then bounded from above by q+ τ ·N · qS , where qi
is the number of queries made by A to Hi, q = max{q0, q1, q2, q3, q4} (we take q2 and q4 as well
for q since we are giving an upper bound), and qS is the number of queries to the signing oracle.
We can then have the following result (it comes simply from the probability to have at least one
collision with q + τ ·N · qS values):

|Pr1[Forge]− Pr2[Forge]| ≤
3 · (q + τ ·N · qS)2

2 · 22λ

– Game 3
The attacker now fails if the inputs to any of the Hi has already appeared in a previous query.
Wlog. the adversary does not make such a query itself and, if it happens in a signing query,
this means that (at least) the salt randomly sampled by the signing oracle appears in a previous
hash or signing query. We can bound this event with:

|Pr2[Forge]− Pr3[Forge]| ≤
qS · (qS + q0 + q1 + q2 + q3 + q4)

22λ
≤ qS · (qS + 5 · q)

22λ

– Game 4
When beginning the signature of the message m, h1 and h2 are sampled uniformly and expanded
into (γ

(e)
1 , . . . , γ

(e)
n , ϵ(e))e∈[1,τ ], and (i∗(e))e∈[1,τ ]. The game proceeds as before, but now we replace

the queries to H2 and H4 by h1 and h2. If a query to H2 or H4 was already made, the attacker
fails. However, this situation doesn’t happen as Game 3 would fail before. Hence,

Pr4[Forge] = Pr3[Forge]

– Game 5
To answer the signing queries, we now use the HVZK simulator built in the previous proof, in
order to generate the views of the open parties. By security of the PRG, the difference with the
previous game is:

|Pr5[Forge]− Pr4[Forge]| ≤ ϵPRG

– Game 6
Finally, we say that an execution e∗ of a query h2 = H4(m, salt, h1, JH

(e)
1 K . . . JH(e)

D Ke∈[1,τ ]) defines
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a good witness x if:
- Each of the H

(e)
k are the output of a query to H3

- h1 is the output of a query to H2, i.e,

h1 = H2(salt,m, h
(1)
0 , . . . , h

(τ)
0 )

- Each h
(e)
0 is the output of a query to H1, i.e,

h
(e)
0 = H1(salt, e, cmt

(e)
1 , . . . , cmt

(e)
N )

-Each cmt
(e)
i is the output of a query to H0, i.e,

cmt
(e)
i = H0(salt, e, i, state

(e)
i )

- The vector x ∈ Fk
q defined by states {statei}i∈[1,N ] is a correct witness, i.e, E = M0+

∑k
i=1Mixi

such that WR(E) ≤ r.
In case where such an execution happens, one can retrieve the correct witness from the states
{statei}i∈[1,N ] and, as a consequence, one can solve the MinRank instance. This means that
Pr6[Solve] ≤ ϵMR.

Finally, we only need to look at the upper bound of
∣∣Pr6[Forge ∩ Solve]

∣∣. This probability is
upper bounded by the value

Pr[X + Y = τ ]

where X = maxi∈[0,q2]{Xi} with Xi ∼ B(τ, p), Y = maxi∈[0,q4]{Yi} with Yi ∼ B(τ −X, 1
N ).

We explain this bound below:

Solve doesn’t happen here, meaning that, to have a forgery after a query to H4, A has no choice
but to cheat either on the first round or on the second one.

Cheating at the first round. For any query Q2 to H2, we call the output of this query h1. For
any query Q2, if a false positive appears in a round e with this value of h1, then we add this
round e to the set we call G2(Q2, h1). This means that Pr[e ∈ G2(Q2, h1) | Solve] ≤ p = 1

qmη +(
1− 1

qmη

)
1

qmη . Since the response h1 is uniformly sampled, each round e has the same probability
to be in the set G2(Q2, h1). This means that #G2(Q2, h1) follows the binomial distribution
XQ2 = B(τ, p). We can then define (Q2best, h1best) such that #G2(Q2, h1) is maximized, i.e,

#G2(Q2best, h1best) ∼ X = max{XQ2}(Q2∈Q2)

Cheating at the second round. Now, we need to look at the cheating in the second round, i.e, the
queries to H4. We will note this query Q4, with the output of this query h2. For the signature to
be accepted, we know that, if in a round, the prover sends a wrong value of h1, then he needs
to cheat on exactly one leaf (it is already established that is isn’t possible to cheat on less, or
on more, than one leaf). He only needs to cheat when the value of h(e)1 is wrong, i.e, he needs to
cheat for every round e /∈ G2(Q2best, h1best). Since every time he cheats, the probability to be
detected is 1

N , it is easy to see the probability that the verification outputs ACCEPT is upper

bounded by
(

1
N

)τ−#G2(Q2best,h1best)
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The probability that the prover is accepted on one of the q4 queries is then upper bounded by

1−

(
1−

(
1
N

)τ−τ1)
where τ1 = #G2(Q2best, h1best). By summing over all values of τ1 possible,

we have then the upper bound:

Pr6[Forge ∩ Solve] ≤ Pr[X + Y = τ ]

where X is as before, and Y = max{YQ2}(Q2∈Q2)
where the YQ2 are distributed following B(τ −

X, 1
N ).

All that is left to do is then to compute the sum of all the upper bounds we retrieved: this gives us
the wanted result.

5.2.2 Security Analysis of MIRA-Threshold

Theorem 4. Let the PRG used be (t, ϵPRG)-secure, and ϵMR the advantage an adversary has over
the MinRank problem. Consider H0,H1,H2 and HM behave as random oracles, with an output of
2λ bits (HM is the function used for the Merkle Tree). Then, if an adversary makes qi queries to
Hi, qS queries to the signing oracle, qM queries to HM , the probability for him to produce a forgery
(EUF-CMA) for the MIRA Threshold Signature Scheme (Fig.12) is:

Pr[Forge] ≤ (q + τ · (2 ·N − 1) · qS)2

22λ
+

qS · (qS + 3q)

22λ
+ ϵPRG + Pr[X + Y = τ ] + ϵMR

where τ is the number of rounds of the signature, p = 1
qmη +

(
1− 1

qmη

)
1

qmη , X = maxi∈[0,q1]{Xi}
with Xi ∼ B(τ,

(
N
ℓ+1

)
· p), and Y = maxi∈[0,q2]{Yi} with Yi ∼ B(τ −X, 1

(Nℓ )
).

Proof. In this proof, we will adopt a game hopping strategy in order to find the upper bound.
The first game will be the access to the standard signing oracle by the adversary A. We will then
game hop in order to eliminate the cases where collisions happen, and, through some other games,
we will manage to find an upper bound.
We note Pri[Forge] the probability of forgery when considering game i. The aim of the proof is to
find an upper bound on Pr1[Forge].

– Game 1
This is the interaction between A and the real signature scheme.
KeyGen generates (M0, . . . ,Mk,x) and A receives M0, . . . ,Mk. A can make queries to each
Hi independently, and can make signing queries. At the end of the attack, A outputs a mes-
sage/signature pair, (m,σ). The event Forge happens when the message output by A was not
previously used in a query to the signing oracle.

– Game 2
We add a condition to the success of the attacker now. If there is a collision in the outputs of
H0 or on HM , then the forgery isn’t valid. Here, H0 is called q0 times by A, HM qM times. When
A calls the signing oracle, there are in total: τ ·N calls to H0, τ · (2 ·N − 1) calls to HM , and
one to H1 and H2. In this game, only H0 and HM are of interest, but for a simpler notation, we
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will take q = max{q0, q1, q2, qM} (as it is an upper bound we are looking for, this is fine). We
can then give an upper bound to the queries made by A to the hash functions, which is then:
q + τ · (2 ·N − 1) · qS where qS is the number of queries to the signing oracle.
When making this many queries, we can now bound from above the probability of having a
collision, with

|Pr1[Forge]− Pr2[Forge]| ≤
(q + τ · (2 ·N − 1) · qS)2

22λ

– Game 3
The attacker now fails if the inputs to any of the Hi has already appeared in a previous query.
Wlog. the adversary does not make such a query itself and, if it happens in a signing query, this
means that (at least) the salt randomly sampled by the signing oracle appears in a previous hash
or signing query. Since we don’t use salt in the Merkle Tree, this will only concern H0,H1,H2.
We sample salt qS time (once by signing oracle query), and 3 · q times as well (each time we
call H0,H1 or H2). If there is an input which already appears for HM , this must be because a
collision has been found either on HM or on H0. However, we already excluded this in Game 2.
This means we can give the following bound:

|Pr2[Forge]− Pr3[Forge]| ≤
qS · (qS + q0 + q1 + q2)

22λ
≤ qS · (qS + 3 · q)

22λ

– Game 4
When beginning the signature of the message m, h1 and h2 are sampled uniformly and expanded
into γ

(e)
1 , . . . , γ

(e)
n , ϵ(e), and i∗(e). The game proceeds as before, but now we replace the queries to

H2 and H4 by h1 and h2. If a query to H2 or H4 was already made, the attacker fails. However,
this situation doesn’t happen as Game 3 would fail before. Hence,

Pr4[Forge] = Pr3[Forge]

– Game 5
To answer the signing queries, we now use the HVZK simulator built in the previous proof, in
order to generate the views of the open parties. By security of the PRG, the difference with the
previous game is:

|Pr5[Forge]− Pr4[Forge]| ≤ ϵPRG

– Game 6
Finally, we say that an execution e∗ of a query h2 = H2(m, pk, salt, h1, (Jα(e)Ki, Jv(e)Ki)i∈S,e∈[1,τ ])
defines a good witness x if:
- h1 is the output of a query to H1, i.e,

h1 = H1(salt,m, h
(1)
0 , . . . , h

(τ)
0 )

- Each h
(e)
0 is the output of a query to the MerkleTree oracle, i.e,

h
(e)
0 = Merkle(cmt

(e)
1 , . . . , cmt

(e)
N )

-Each cmt
(e)
i is the output of a query to H0, i.e,

cmt
(e)
i = H0(salt, e, i, state

(e)
i )
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- The vector x ∈ Fk
q defined by states {statei}i∈[1,N ] is a correct witness, i.e, E = M0+

∑k
i=1Mixi

such that WR(E) ≤ r.
In case where such an execution happens, one can retrieve the correct witness from the states
{statei}i∈[1,N ] and, as a consequence, one can solve the MinRank instance. This means that
Pr6[Solve] ≤ ϵMR.

Finally, we only need to look at the upper bound of
∣∣Pr6[Forge ∩ Solve]

∣∣. This probability is
upper bounded by the value

Pr[X + Y = τ ]

with X = maxi∈[0,q1]{Xi} with Xi ∼ B(τ,
(

N
ℓ+1

)
·p), Y = maxi∈[0,q2]{Yi} with Yi ∼ B(τ −X, 1

(Nℓ )
)

and where p = 1
qmη +

(
1− 1

qmη

)
1

qmη .
This result comes directly from [FR22, Lemma 6 and Theorem 4, Appendix F].

All that is left to do is then to compute the sum of all the upper bounds we retrieved: this gives us
the wanted result.

6 Known Attacks

6.1 Attacks against Fiat-Shamir Signatures

There are several attacks against signatures from zero-knowledge proofs obtained thanks to the
Fiat-Shamir heuristic. [AABN02] proposes an attack more efficient than brute force for protocols
with more than one challenge, i.e. for protocols of a minimum of 5 rounds.

Kales and Zaverucha proposed in [KZ20] a forgery attack which consists in guessing separately the
two challenges of the protocol. It results an additive cost rather than the expected multiplicative
cost. The cost to forge a valid transcript for a 5-round proof of knowledge corresponds to the cost of
the optimal trade-off between the work needed to pass the first step and the work needed to pass the
second step. To run the attack, one can find the optimal number of repetitions for the brute-force
work of the first step with the formula:

τ ′ = arg min
0≤τ ′≤τ

{
1∑τ

i=τ ′
(
τ
i

)
P i
1(1− P1)τ−i

+
( 1

P2

)τ−τ ′}

where P1 and P2 are the probabilities to pass respectively the first and the second challenges for
one repetition.

6.1.1 Cost of forgery of MIRA-Additive

In the additive case, one obtains:

costforge = min
0≤τ ′≤τ

{
1∑τ

i=τ ′
(
τ
i

)
pi(1− p)τ−i

+ (N)τ−τ
′

}

where p = 2
qmη − 1

2qmη .
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6.1.2 Cost of forgery of MIRA-Threshold

In the threshold case, one obtains:

costforge = min
0≤τ ′≤τ

{
1∑τ

i=τ ′
(
τ
i

)
p′i(1− p′)τ−i

+

(
N

ℓ

)τ−τ ′
}

where p′ =
(

2
qmη − 1

2qmη

)(
N
ℓ+1

)
.

6.2 Attacks against MinRank

In this section, we briefly describe the most effective attacks on MinRank. A reader can refer
to [BB22], [GND23], [BBB+22], [BBC+20], and [GC00] for more details on the attacks.

To begin with, the following hybrid approach can benefit to all the other attacks.

Hybrid approach

[BBB+22] introduced a generic approach to improve all the attacks on MinRank. The idea of the
attack is to solve smaller instances of MinRank instead. The complexity is given by

min
a

(qarCA(q,m, n− a,K − am, r)) (5)

where CA(q,m, n,K, r) is the cost of an algorithm A to solve a MinRank instance.

6.2.1 The Kernel Attack

The kernel attack was described by Goubin and Courtois in [GC00]. The idea of the attack is to
take random vectors, and hoping that they are in the kernel of E. Since E is of size m× n, and is
of rank at most r, Ker(E) will be a matrix of dimensions n × (n − r) at least. Thus, if v $←− Fn

q ,
Pr[v ∈ Ker(E)] = qn−r

qn = 1
qr . Then, if we get l independant vectors in Ker(E), and set the matrix

X whose columns are the l vectors, we can compute (M0 +
∑k

i=1 xiMi)X, which gives us a linear
system in x1 . . . xk, and m·l equations (since we have (M0+

∑k
i=1 xiMi)X = 0). Thus with l = ⌈ km⌉,

we have a unique solution to the system, which we can find with linear algebra.
As to the complexity of the attack, it is quite obvious that it is in O(qr⌈

k
m
⌉) to find the vectors in

the kernel, and in O(kω) to solve the linear system. Hence, the total complexity is

O(qr⌈
k
m
⌉kω)

6.2.2 Algebraic Attacks

Minors Modeling
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The modeling was introduced and studied in [FSS10] and [FSS13]. This modeling uses the minors
of the matrix E, where the xi are still unknowns. It was also improved in [GND23]. We refer to
these papers for the complexity of the attack.

Support Minors Modeling

The Support Minors modeling was introduced in [BBC+20]. This idea also uses minors of a matrix,
giving us an other system of equations. With this approach, the complexity is of

O
(
NbMb

ω−1) ,
where

Nb =
b∑

i=1

(−1)i+1

(
n

r + i

)(
k + b− 1− i

b− i

)(
m+ i− 1

i

)
. (6)

Mb =

(
k + b− 1

b

)(
n

r

)
. (7)

and b is the degree to which we augment the Macaulay matrix of the system ( [BBB+22]).
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